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EXTENDED ABSTRACT 

 
This is a companion paper to the one titled: How to work with curved structures; theory. 
The general theory is presented in the cited paper. In the present paper two specific 
example applications are given in detail. Provided that the main ingredients in the method 
of local Cartesian frame for curved structures are explained in the theory paper, we here 
just shortly describe the two applications. 
 
The first application concerns the analysis of a circular disk. Polar coordinates are 
employed. The conventional procedure applied in textbooks in this case is again based 
on carefully drawn figures showing the initial and deformed geometry for a small material 
element. Deducing the relevant expressions from the figures demands rather careful 
interpretations. Our approach is based on the use of a local Cartesian frame. Further, 
after the strains have been determined, the local equilibrium equations and the traction 
boundary conditions are arrived at by employing the principle of virtual work. Integration 
by parts in two dimensions is needed in the manipulations. This part of mathematics may 
be somewhat unfamiliar to the students. However, in introducing the most important 
principle of virtual work in general, integration by parts must be mastered, so this should 
not be a grave problem. 
 
The second application concerns the analysis of a circular beam in two loading cases. 
Emphasis is placed on the importance of the corresponding kinematic assumptions. The 
curvilinear coordinates are now the beam axis arc length and two rectangular axes 
perpendicular to the beam axis. To determine the strains correctly from figures describing 
the geometry in the original and in the deformed state seems to us as a nearly impossible 
task. The method of local Cartesian frame works easily. In the equilibrium equations 
derivation, which is based on the principle of virtual work, integration by parts is needed 
only in one dimension. This tool should be already rather familiar to the students. 
 
The meaning of the papers considered, is not just to derive the basic equations of 
classical mechanics, but to derive them in a systematic way students can easier 
assimilate. According to the feedback of students, it is obvious that even the complicated 
equations of the shell theory have got a novel role, when the background of each term 
will get a clear physical meaning.  
 
Other concepts based on various kinematical assumptions, such as sectorial coordinate 
with thin-walled structures, may be derived simply as well.  
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1. INTRODUCTION 
 
This is a companion paper to the paper of this conference titled: How to work with curved 
structures; theory. This will be referred to hereon as the theory paper. The general theory 
is presented in the cited paper. In the present paper, two specific example applications 
are given in detail. 
 
The first application concerns the analysis of a circular disk. Polar coordinates are 
employed. The second application concerns the analysis of a circular beam. The 
curvilinear coordinates are now the beam arc length parameter and two rectangular axes 
perpendicular to the beam axis. 
 
We repeat from the theory paper the basic relations used in the method of local Cartesian 
frame:  

 ,X α Y β= =e e e e  (1) 

and 

 
1 1

,
α βX h α Y h β

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
. (2) 

The meaning of the notations are shown in Figure 1, and explained in the theory paper. 

 

 
Figure 1: The local frame. 

Additionally, we may need the derivatives of the unit vectors αe  and βe  with respect to 

α  and β . In connection with the principle of virtual work we will need also the integration 

by parts formulae. These both are derived in the theory paper. However, in what follows 
we will not represent general formulas for strains and general equilibrium equations, 
(Paavola and Salonen (2004)). Instead, in the two applications we will derive the 
necessary relations directly and not via general formulae. 

 
2. CIRCULAR DISK 
2.1 Polar coordinates 
 

We consider a circular disk with a radius R (Figure 2). Polar coordinates r and θ  are 
employed in the analysis. No dependence of the relevant quantities in the perpendicular 
direction to the disk is assumed. 
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We repeat here from the theory paper the relevant formulae in polar coordinates. The 

scale factors are 1rh = , θh r= . The counterparts of (1) and (2) are 

 ,X r Y θ= =e e e e  (3) 

and 

 
1

,
X r Y r θ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
. (4) 

Further, the derivatives of the unit vectors are 

 θ θr r
θ r, , ,

r θ r θ

∂ ∂∂ ∂
= = = = −

∂ ∂ ∂ ∂

e ee e
0 e 0 e . (5) 

 

 
 
Figure 2: Part of a circular disk and notation. 

 
2.2 Strains 
 
The displacement field u has the alternative representations 

 
= +

= +

,

.

X X Y Y

r r θ θ

u u

u u

u e e

e e
 (6) 

In the theory paper, the small strain expressions are derived in the local frame: 

 

,

,

.

X
X X

Y
Y Y

X Y
XY X Y

u
ε

X X

u
ε

Y Y

u u
γ

Y X Y X

•

•

• •

∂ ∂
= =

∂ ∂
∂ ∂

= =
∂ ∂
∂ ∂ ∂ ∂

= + = +
∂ ∂ ∂ ∂

u
e

u
e

u u
e e

 (7) 

Thus, applying (3) and (4), at the local origin, the strain components are resolved: 

 
1

1

,

,

.

r X r

θ Y θ

rθ XY r θ

ε ε
r

ε ε
r θ

γ γ
r θ r

•

•

• •

∂
= =

∂
∂

= =
∂
∂ ∂

= = +
∂ ∂

u
e

u
e

u u
e e

 (8) 

The last form (6) is substituted in (8) and formulae (5) are used. We obtain in detail 

 θr r
r r θ r

uu u
ε

r r r
•

∂∂ ∂ 
= + = ∂ ∂ ∂ 

e e e , 
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1 1θ θr

θ r r θ θ θ r θ r

u uu
ε u u u

r θ θ r θ
•

∂ ∂∂   
= + + − = +   ∂ ∂ ∂   

e e e ee , (9) 

 

 
1 1θ θr r

rθ r r θ θ θ r r r θ θ

u uu u
γ u u

r θ θ r r r
• •

∂ ∂∂ ∂   
= + + − + +   ∂ ∂ ∂ ∂   

e e e e e e e e  

 
1 θr

θ

uu
u

r θ r

∂∂ 
= − + ∂ ∂ 

. 

Based on classical approaches (Timoshenko and Goodier (1951, p. 65-66)), these results 
are obtained from a rather awkward differential geometry figure. 
 
2.3 Equilibrium 
 
The well-known general form of stress equilibrium equations for a continuum is 

div + =σ f 0 , where σ  is the stress tensor and f  the body force vector intensity (per 

volume). We could continue by using the method of local Cartesian frame and dyadic 
representation. A rather long manipulation is needed to give the final equilibrium 
equations. They are not given here. Further, the equation referred to is clearly not a 
suitable starting point for basic courses. The equation itself is probably not familiar and 
the manipulations needed are rather tedious even when the present polar coordinate 
case is considered. However, the principle of virtual work gives an alternative way to 
produce the equilibrium equations. 
 
The principle of virtual work is applied for the equilibrium consideration, and it can be 
expressed as 

 0
i eδW δW+ = . (10) 

Here for a two-dimensional continuum (assuming small strains) the virtual work of internal 
forces is expressed by: 

 ( )di
x x y y xy xy

A

δW σ δε σ δε τ δγ A= − + +∫  (11) 

and the virtual work of external forces, correspondingly is, 

 ( ) ( )d d

t

e
x y x y

A s

δW f δu f δv A t δu t δv s= + + +∫ ∫  (12) 

The virtual strains are obtained by variation of the general strain-displacement relations. 

Boundary ts  is that part of the total boundary where the traction t is given. 

Correspondingly, in Figure 2 the notation us  refers to that part of the total boundary 

where the displacement u is given. 
 
The integrands in (11) and (12) are because of their physical meaning, scalar quantities 
and therefore invariant with respect to coordinate transformations. With reference to polar 
coordinates, the following may be written: 

 
,

,

.

x x y y xy xy X X Y Y XY XY

r r θ θ rθ rθ

x y X X Y Y r r θ θ

x y X X Y Y r r θ θ

σ δε σ δε τ δε σ δε σ δε τ δγ

σ δε σ δε τ δγ

f δu f δv f δu f δu f δu f δu

t δu t δv t δu t δu t δu t δu

+ + = + +

= + +

+ = + = +

+ = + = +

 (13) 

Thus, the principle of virtual work obtains in polar coordinates the form 
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 ( )dr r θ θ rθ rθ

A

σ δε σ δε τ δγ A− + +∫  

 ( ) ( ) 0d d

t

r r θ θ r r θ θ

A s

f δu f δu A t δu t δu s+ + + + =∫ ∫ , (14) 

where the virtual strain components are expressed from (9) 

 
1 1 θr r r

r θ r rθ θ

δuδu δu δu
δε , δε δu , δγ δu .

r r θ r θ r

∂∂ ∂ ∂   
= = + = − +   ∂ ∂ ∂ ∂   

 (15) 

Upon substitution d d dA r r θ=  in Eqn. (14), the following simplifications are obtained: 

first the form 

 [
,

d dθ θr r
r θ r rθ θ rθ

r θ

δu δuδu δu
rσ σ δu τ δu rτ r θ

r θ θ r

∂ ∂∂ ∂   
− + + + − +    ∂ ∂ ∂ ∂   
∫  

 ( ) ( ) 0

,

d d d

t

r r θ θ r r θ θ

r θ s

r f δu r f δu r θ t δu t δu s+ + + + =∫ ∫ . (16) 

Then, using integration by parts (with the formulae derived in the theory paper): 

 
r, r,

r, r,

d d d d d ,

d d d d d .

r

θ s θ

θ

θ s θ

ng f
f r θ f g s g r θ

r r r

g f
f r θ n f g s g r θ
θ θ

∂ ∂
= −

∂ ∂

∂ ∂
= −

∂ ∂

∫ ∫ ∫

∫ ∫ ∫
 (17) 

These are applied to eliminate the derivatives on the virtual displacement components 

rδu  and θu . The result is 

 

,

( )( )
d drθ θ rθr

θ r r rθ θ θ

r θ

τ σ rτrσ
σ r f δu τ r f δu r θ

r θ θ r

 ∂ ∂ ∂∂   
− + + + + + +    ∂ ∂ ∂ ∂    

∫  

 [ ]{ [ ] } 0d

t

r r r θ rθ r θ θ θ r rθ θ

s

t n σ n τ δu t n σ n τ δu s+ − − + − − =∫  (18) 

It should be noted that the virtual displacement components are set to vanish on us , 

which explains why the line integral is only over ts . The equilibrium equations are thus — 

after some minor development: 

 

1
0

21
0

,

,

rθ r θr
r

θ rθ rθ
θ

τ σ σσ
f

r r θ r

σ τ τ
f

r θ θ r

∂ −∂
+ + + =

∂ ∂
∂ ∂

+ + + =
∂ ∂

 (19) 

 
,

.

r r r θ rθ

θ θ θ r rθ

t n σ n τ

t n σ n τ

= +

= +
 (20) 

The traction boundary conditions simplify with the geometry of Figure 2 to 

 = =, .r r θ rθt σ t τ  (21) 

as on the boundary 1rn =  and 0θn = . 
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Classically the equilibrium equations are obtained from a free-body diagram, e.g. 
Timoshenko and Goodier (1951, p.55-56). Our way of derivation cannot be considered 
particularly short. However, the steps used contain no arbitrariness. Further, similar 
manipulations must be performed in numerous applications of the principle of virtual work 
and this example case is a good demonstration exercise for the students. 
 
3. CIRCULAR BEAM 
3.1 Coordinate system 
 
A circular plane beam is considered using the notation of Figure 3. The beam is assumed 
to be symmetrical in geometry and in material properties with respect to the -xy plane. 

The beam is clamped at 0=s . As seen from the figure, here the y notation is used with 
two meanings; as a global coordinate and also locally at the beam cross-section, but this 
should not cause any confusion. Further, a local coordinate z (not shown in the figure) 
perpendicular to the -xy plane is needed. Compared to the theory part, where only the 

two dimensional case was treated, we here have one additional dimension. Additional 

notations γ  and Ze  with obvious meanings are introduced. The curved beam axis is 

taken to be an α -coordinate line; here α  is associated with the arc length s. The β - and 

-γ coordinate lines are straight and =β y  and =γ z . The local unit vectors se , ye  and 

ze  form a right-handed triad. 

                                                         
Figure 3: Circular beam. 
 

The position vector of the beam axis is given by =0 yRr e  and that of the generic point P 

by 

 ( ) ( )= + + = + + = + +0 y z y y z y zs,y ,z y z R y z R y zr r e e e e e e e . (22) 

The dependence on s comes through ye  which is not constant. From curve theory 

0d d ss =r e  and by Frenet formulae, 

 
1 1

= − =
dd

d d

ys
y s,

s R s R

ee
e e . (23) 

Differentiation of (22) gives 

 

( ) ( ) 1
1

∂  = + = + = + ∂  
∂ ∂

= =
∂ ∂

yd

d
s s

y z

y
R y R y ,

s s R R

, .
y z

er
e e

r r
e e

 (24) 

The scale factors are thus seen to be 
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 1 1 1
∂ ∂ ∂

= = + = = = =
∂ ∂ ∂s y z

y
h , h , h

s R y z

r r r
. (25) 

Consequently, the counterparts of (1) and (2) are now 

 = = =X s Y y Z z, ,e e e e e e  (26) 

and 

 
1

1

−∂ ∂ ∂ ∂ ∂ ∂ = + = = ∂ ∂ ∂ ∂ ∂ ∂ 

y
, ,

X R s Y y Z z
. (27) 

 
3.2 Displacement; general 

We take here the Timoshenko type kinematic small displacement assumption where the 
beam material cross sections are assumed to move as rigid plates with no deformation in 
plate planes. The generic displacement vector of a generic point P becomes then 

 ( ) ( ) ( ) ( )= − − + − + +z y s s y s zs,y ,z u yθ zθ v zθ w yθu e e e . (28) 

Quantities u, v and w are the displacement components of the origin 0 of the cross-

section and sθ , yθ  and zθ  are the components of the cross-sectional rotation vector. 

Following certain notational convention, the component yθ  is defined as positive in the 

negative local -y axis direction. 

 
3.3 Displacement; first case 

To simplify the presentation we will consider here just two special cases. In the 
first case the loading consists of a point load P acting at the tip of beam and 
directed in the local positive -y axis direction. In the second case the tip load P acts in the 

local positive −z axis direction. 

In the first case, due to the assumed symmetry, the displacement of point 0 must be in 
the -xy plane and the rotation vector must be perpendicular to the -xy plane. Thus, the 

only non-zero displacement components are u, v and the only non-zero rotation 

component is zθ . Expression (28) simplifies to 

 ( ) ( )= − +z s ys,y u yθ vu e e . (29) 

3.4 Strains; first case 

The relevant strain components are 

 

1

1

1

1

s X X s

sy XY X Y s y

y
ε ε ,

X R s

y
γ γ .

Y X y R s

• •

• • • •

−

−

∂ ∂ = = = + ∂ ∂ 

∂ ∂ ∂ ∂ = = + = + + ∂ ∂ ∂ ∂ 

u u
e e

u u u u
e e e e

 (30) 

The derivatives 

 

( )dd d

d d d

y sz
s z y

z s

θu v
y u yθ v ,

s s s R s R

θ
y

 ∂  
= − + − − + +  ∂    

∂
= −

∂

e eu
e e

u
e

 (31) 
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and substitution into (30) gives 

 

1

1

1

1

dd

d d

d

d

z
s

z
sy z

θy u v
ε y ,

R s s R

u yθy v
γ θ .

R R s

−

−

  = + − +   
   

−  = + − + −   
   

 (32) 

To derive these exact results alternatively by some — however carefully drawn — figures 
is in our opinion practically impossible. 

3.5 Equilibrium; first case 
 
Again, the equilibrium equations are derived here by employing the principle of virtual 
work. The usual assumptions concerning stresses for plane beams is that only the 

components sσ  and syτ  are non-zero. Thus, the virtual work of internal forces becomes 

 ( )dI
s s sy sy

v

δw σ δε τ δγ V= +∫ , (33) 

where the integration is over the volume of the beam. The volume element dV  can be 
expressed here as 

 1d d d d d d ds
y

V A X Ah s A s
R

 = = = + 
 

, (34) 

where dA  is beam cross-sectional area element. The virtual strain expressions are 

obtained by variations of Eqn. (32) and the virtual work  expression becomes 

 [
1

1
dd

d d

I z
s

s A

δθy δu δv
δw σ y

R s s R

−    = − + − +    
   

∫ ∫  

 
1

1 1
d

d d
d

sy z
y δv δu y

τ δθ A s
R s R R

−       + + − − +      
       

 

 
dd d

d d
d d d

z
s sy z

s A

δθδu δv δv δu
σ y τ δθ A s

s s R s R

     = − − + + − −    
     

∫ ∫ . (35) 

The inner integral is over the beam cross-section and the outer over the beam axis 
length. 
 
In the conventional manner, the stress resultants consisting of the normal force, the 
shearing force and the bending moment are defined respectively by 

 d d ds y sy z s

A A A

N σ A , Q τ A, M σ y A.= = =∫ ∫ ∫  (36) 

The virtual work of internal forces (35) becomes then 

 
dd d

d
d d d

I z
z y z

s

δθδu δv δv δu
δw N M Q δθ s

s R s s R

    = − + − + − −    
    

∫ . (37) 

The virtual work of external forces is here just the virtual work of the vertical load: 

 e
s l

δW P δv
=

= , (38) 

where 2l πR /= . The virtual work equation becomes thus 
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 0
dd d

d
d d d

z
z y z s l

s

δθδu δv δv δu
N M Q δθ s P δv

s R s s R =
    − + − + − − + =    

    
∫ . (39) 

To deduce the equilibrium equations, the derivatives on the virtual displacement 
quantities must be removed by integration by parts. The corresponding formula from the 
theory paper becomes with x replaced by s here 

 [ ]0

0 0

d d
d d

d d

l l
lf g

g s f g f s
s s

= −∫ ∫ . (40) 

Equation (39) is found to transform to (note that due to the clamped beam end 

0zδu δv δθ= = =  at 0s = ) 

 
d dd

d
d d d

y y z
y

s

Q Q MN N
δu δv Q δθ s

s R s R s

       
+ + − − −      

      
∫  

 ( ) 0y z
s l

N δu Q P δv M δθ
=

 + − + − + + =  . (41) 

Thus, the field equilibrium equations are 

 0 0 0
d dd

d d d

y y z
y

Q Q MN N
, , Q

s R s R s
+ = − = − =  (42) 

and the traction boundary conditions at s l=  are 

 0 0y zN , Q P , M= = = . (43) 

In this one-dimensional case the free body diagram approach can produce these 
relations relatively easily. The virtual work approach presented here may be considered 
as an alternative method to direct establishment of equilibrium equations, once again 
demonstrating to the students the importance of the principle of the virtual work. 

3.6 Displacement; second case 

Now due to the assumed symmetry, the displacement of point 0 must 
perpendicular to the -xy plane and the rotation vector must be in -xy plane. Thus, 

the only non-zero displacement component is w and the only non-zero rotation 
components are sθ  and yθ . Expression (28) simplifies to 

 ( ) ( )= − − + +y s s y s zs,y ,z zθ zθ w yθu e e e . (44) 

3.7 Strains; second case 

Due to the page limitations, the following presentation is outlined briefly. However, 
the steps needed are completely similar to those used in the first loading case. 
The relevant strain components are now 

 

1

1

1

1

1

1

• •

• • • •

• • • •

−

−

−

∂ ∂ = = = + ∂ ∂ 

∂ ∂ ∂ ∂ = = + = + + ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ = = + = + + ∂ ∂ ∂ ∂ 

s X X s

sy XY X Y s y

sz XZ X Z s z

y
ε ε ,

X R s

y
γ γ ,

Y X y R s

y
γ γ .

Z X z R s

u u
e e

u u u u
e e e e

u u u u
e e e e

 (45) 
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By differentiating the displacement expression (44) with respect to s, y and z and 
substituting the results in (45) the following are obtained: 

 

1

1

1

1

1

1

d

d

d

d

dd

d d

y s
s

ys
sy

s
sz y

θ θy
ε z ,

R s R

θθy
γ z ,

R s R

θy w
γ y θ .

R s s

−

−

−

  = − + +  
   

  = − + −  
   

  = + + −   
   

 (46) 

3.8 Equilibrium; second case 

The virtual work of internal forces 

 ( )dI
s s sy sy sz sz

v

δw σ δε τ δγ τ δγ V= + +∫  (47) 

becomes finally 

 
dd d

d
d d d

y yI s s
s y z y

s

δθ δθδθ δθ δw
δw M M Q δθ s

s R s R s

      = − − − + + −      
      

∫  (48) 

where the stress resultants are 

 ( )d d ds sz sy y s z sz

A A A

M yτ zτ A, M σ z A , Q τ A.= − = =∫ ∫ ∫  (49) 

The external virtual work from the transverse load P at the beam tip is 

 e
s l

δW P δw
=

=  (50) 

The virtual work equation gives after the necessary integration by parts manipulations the 
field equations 

 0 0 0
dd d

d d d

y ys s z
z

M MM M Q
, Q ,

s R s R s
+ = − − = =  (51) 

and the traction boundary conditions 

 0 0s y zM , M , Q P= = =  (52) 

at s l= . 

 

4. CONCLUSIONS 

The present paper shows some simple examples to demonstrate the use of the method 
of local Cartesian frame by emphasizing the role of the kinematics to take into account 
the loading and the geometry of the structure considered. 
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